Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates.

Identifieur interne : 001377 ( Main/Exploration ); précédent : 001376; suivant : 001378

The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates.

Auteurs : Alexandre Soulard [Suisse] ; Alessio Cremonesi ; Suzette Moes ; Frédéric Schütz ; Paul Jenö ; Michael N. Hall

Source :

RBID : pubmed:20702584

Descripteurs français

English descriptors

Abstract

Regulation of cell growth requires extensive coordination of several processes including transcription, ribosome biogenesis, translation, nutrient metabolism, and autophagy. In yeast, the protein kinases Target of Rapamycin (TOR) and protein kinase A (PKA) regulate these processes and are thereby the main activators of cell growth in response to nutrients. How TOR, PKA, and their corresponding signaling pathways are coordinated to control the same cellular processes is not understood. Quantitative analysis of the rapamycin-sensitive phosphoproteome combined with targeted analysis of PKA substrates suggests that TOR complex 1 (TORC1) activates PKA but only toward a subset of substrates. Furthermore, we show that TORC1 signaling impinges on BCY1, the negative regulatory subunit of PKA. Inhibition of TORC1 with rapamycin leads to BCY1 phosphorylation on several sites including T129. Phosphorylation of BCY1 T129 results in BCY1 activation and inhibition of PKA. TORC1 inhibits BCY1 T129 phosphorylation by phosphorylating and activating the S6K homolog SCH9 that in turn inhibits the MAP kinase MPK1. MPK1 phosphorylates BCY1 T129 directly. Thus, TORC1 activates PKA toward some substrates by preventing MPK1-mediated activation of BCY1.

DOI: 10.1091/mbc.E10-03-0182
PubMed: 20702584
PubMed Central: PMC2947482


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates.</title>
<author>
<name sortKey="Soulard, Alexandre" sort="Soulard, Alexandre" uniqKey="Soulard A" first="Alexandre" last="Soulard">Alexandre Soulard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biozentrum, University of Basel, CH-4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Biozentrum, University of Basel, CH-4056 Basel</wicri:regionArea>
<wicri:noRegion>CH-4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cremonesi, Alessio" sort="Cremonesi, Alessio" uniqKey="Cremonesi A" first="Alessio" last="Cremonesi">Alessio Cremonesi</name>
</author>
<author>
<name sortKey="Moes, Suzette" sort="Moes, Suzette" uniqKey="Moes S" first="Suzette" last="Moes">Suzette Moes</name>
</author>
<author>
<name sortKey="Schutz, Frederic" sort="Schutz, Frederic" uniqKey="Schutz F" first="Frédéric" last="Schütz">Frédéric Schütz</name>
</author>
<author>
<name sortKey="Jeno, Paul" sort="Jeno, Paul" uniqKey="Jeno P" first="Paul" last="Jenö">Paul Jenö</name>
</author>
<author>
<name sortKey="Hall, Michael N" sort="Hall, Michael N" uniqKey="Hall M" first="Michael N" last="Hall">Michael N. Hall</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20702584</idno>
<idno type="pmid">20702584</idno>
<idno type="doi">10.1091/mbc.E10-03-0182</idno>
<idno type="pmc">PMC2947482</idno>
<idno type="wicri:Area/Main/Corpus">001380</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001380</idno>
<idno type="wicri:Area/Main/Curation">001380</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001380</idno>
<idno type="wicri:Area/Main/Exploration">001380</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates.</title>
<author>
<name sortKey="Soulard, Alexandre" sort="Soulard, Alexandre" uniqKey="Soulard A" first="Alexandre" last="Soulard">Alexandre Soulard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biozentrum, University of Basel, CH-4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Biozentrum, University of Basel, CH-4056 Basel</wicri:regionArea>
<wicri:noRegion>CH-4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cremonesi, Alessio" sort="Cremonesi, Alessio" uniqKey="Cremonesi A" first="Alessio" last="Cremonesi">Alessio Cremonesi</name>
</author>
<author>
<name sortKey="Moes, Suzette" sort="Moes, Suzette" uniqKey="Moes S" first="Suzette" last="Moes">Suzette Moes</name>
</author>
<author>
<name sortKey="Schutz, Frederic" sort="Schutz, Frederic" uniqKey="Schutz F" first="Frédéric" last="Schütz">Frédéric Schütz</name>
</author>
<author>
<name sortKey="Jeno, Paul" sort="Jeno, Paul" uniqKey="Jeno P" first="Paul" last="Jenö">Paul Jenö</name>
</author>
<author>
<name sortKey="Hall, Michael N" sort="Hall, Michael N" uniqKey="Hall M" first="Michael N" last="Hall">Michael N. Hall</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Cyclic AMP-Dependent Protein Kinases (metabolism)</term>
<term>Enzyme Activation (drug effects)</term>
<term>Isotope Labeling (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phosphopeptides (chemistry)</term>
<term>Phosphopeptides (metabolism)</term>
<term>Phosphoproteins (metabolism)</term>
<term>Phosphorylation (drug effects)</term>
<term>Phosphothreonine (metabolism)</term>
<term>Proteome (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae Proteins (antagonists & inhibitors)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Substrate Specificity (drug effects)</term>
<term>TOR Serine-Threonine Kinases (antagonists & inhibitors)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (effets des médicaments et des substances chimiques)</term>
<term>Cyclic AMP-Dependent Protein Kinases (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Marquage isotopique (MeSH)</term>
<term>Phosphopeptides (composition chimique)</term>
<term>Phosphopeptides (métabolisme)</term>
<term>Phosphoprotéines (métabolisme)</term>
<term>Phosphorylation (effets des médicaments et des substances chimiques)</term>
<term>Phosphothréonine (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (antagonistes et inhibiteurs)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéome (métabolisme)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Spécificité du substrat (effets des médicaments et des substances chimiques)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Sérine-thréonine kinases TOR (antagonistes et inhibiteurs)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Phosphopeptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Phosphopeptides</term>
<term>Phosphoproteins</term>
<term>Phosphothreonine</term>
<term>Proteome</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Phosphopeptides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Enzyme Activation</term>
<term>Phosphorylation</term>
<term>Saccharomyces cerevisiae</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Phosphorylation</term>
<term>Saccharomyces cerevisiae</term>
<term>Spécificité du substrat</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Facteurs de transcription</term>
<term>Phosphopeptides</term>
<term>Phosphoprotéines</term>
<term>Phosphothréonine</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéome</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Isotope Labeling</term>
<term>Molecular Sequence Data</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Marquage isotopique</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Regulation of cell growth requires extensive coordination of several processes including transcription, ribosome biogenesis, translation, nutrient metabolism, and autophagy. In yeast, the protein kinases Target of Rapamycin (TOR) and protein kinase A (PKA) regulate these processes and are thereby the main activators of cell growth in response to nutrients. How TOR, PKA, and their corresponding signaling pathways are coordinated to control the same cellular processes is not understood. Quantitative analysis of the rapamycin-sensitive phosphoproteome combined with targeted analysis of PKA substrates suggests that TOR complex 1 (TORC1) activates PKA but only toward a subset of substrates. Furthermore, we show that TORC1 signaling impinges on BCY1, the negative regulatory subunit of PKA. Inhibition of TORC1 with rapamycin leads to BCY1 phosphorylation on several sites including T129. Phosphorylation of BCY1 T129 results in BCY1 activation and inhibition of PKA. TORC1 inhibits BCY1 T129 phosphorylation by phosphorylating and activating the S6K homolog SCH9 that in turn inhibits the MAP kinase MPK1. MPK1 phosphorylates BCY1 T129 directly. Thus, TORC1 activates PKA toward some substrates by preventing MPK1-mediated activation of BCY1.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20702584</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>01</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2010</Year>
<Month>Oct</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates.</ArticleTitle>
<Pagination>
<MedlinePgn>3475-86</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E10-03-0182</ELocationID>
<Abstract>
<AbstractText>Regulation of cell growth requires extensive coordination of several processes including transcription, ribosome biogenesis, translation, nutrient metabolism, and autophagy. In yeast, the protein kinases Target of Rapamycin (TOR) and protein kinase A (PKA) regulate these processes and are thereby the main activators of cell growth in response to nutrients. How TOR, PKA, and their corresponding signaling pathways are coordinated to control the same cellular processes is not understood. Quantitative analysis of the rapamycin-sensitive phosphoproteome combined with targeted analysis of PKA substrates suggests that TOR complex 1 (TORC1) activates PKA but only toward a subset of substrates. Furthermore, we show that TORC1 signaling impinges on BCY1, the negative regulatory subunit of PKA. Inhibition of TORC1 with rapamycin leads to BCY1 phosphorylation on several sites including T129. Phosphorylation of BCY1 T129 results in BCY1 activation and inhibition of PKA. TORC1 inhibits BCY1 T129 phosphorylation by phosphorylating and activating the S6K homolog SCH9 that in turn inhibits the MAP kinase MPK1. MPK1 phosphorylates BCY1 T129 directly. Thus, TORC1 activates PKA toward some substrates by preventing MPK1-mediated activation of BCY1.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Soulard</LastName>
<ForeName>Alexandre</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Biozentrum, University of Basel, CH-4056 Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cremonesi</LastName>
<ForeName>Alessio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Moes</LastName>
<ForeName>Suzette</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schütz</LastName>
<ForeName>Frédéric</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jenö</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hall</LastName>
<ForeName>Michael N</ForeName>
<Initials>MN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>08</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010748">Phosphopeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010750">Phosphoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1114-81-4</RegistryNumber>
<NameOfSubstance UI="D010769">Phosphothreonine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.11</RegistryNumber>
<NameOfSubstance UI="D017868">Cyclic AMP-Dependent Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017868" MajorTopicYN="N">Cyclic AMP-Dependent Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007553" MajorTopicYN="N">Isotope Labeling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010748" MajorTopicYN="N">Phosphopeptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010750" MajorTopicYN="N">Phosphoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010769" MajorTopicYN="N">Phosphothreonine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20702584</ArticleId>
<ArticleId IdType="pii">E10-03-0182</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E10-03-0182</ArticleId>
<ArticleId IdType="pmc">PMC2947482</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 Jul 17;50(2):277-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3036373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Jun 25;262(18):8636-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3036817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Apr;7(4):1371-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3037314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Aug;7(8):2653-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2823100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Jun 25;263(18):8576-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2837458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Jul 5;263(19):9149-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3288630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1988 May;2(5):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3290050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jan 28;280(4):2529-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Dec;34(12):620-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Dec;21(6):825-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Aug 5;28(15):2220-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19574957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 15;23(16):1929-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Oct 15;266(29):19704-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1655793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Oct 25;19(20):5791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1945859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 May;17(5):2615-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9111331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13804-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9391108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Feb 15;12(4):586-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9472026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Oct 4;147(1):163-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1054-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Jan;4(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2005 Mar;4(3):310-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15665377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2005 May;47(5):273-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 17;102(20):7215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Jun;69(2):262-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Jul;170(3):1009-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15879503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13933-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16172400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2005 Nov;23(11):1391-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16273072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Dec 1;438(7068):679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16319894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2005 Dec;4(12):2010-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16249172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2006 Mar;70(1):253-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Sep;61(5):1147-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16925551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Aug;173(4):1909-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15044-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6392-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Targets. 2006 Nov;7(11):1455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17100585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2007 Mar;6(3):1190-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17330950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(4):1929-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17487178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Feb;7(2):148-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18249174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2008 Mar;7(3):1088-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18257517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jul;19(7):2708-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Dec;26(12):1367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(5):698-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19373234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 8;284(19):12604-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2009 Aug;8(8):1908-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1991 Apr;5(4):533-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2010083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1999 Dec;20(18):3551-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10612281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 14;275(2):1449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10625697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Jan;21(2):511-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11134339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Nov;8(5):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2001 Aug;101(8):2381-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11749379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Apr 2;12(7):588-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11937029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2002 May;1(5):376-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12118079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2002 Jul 1;74(13):3221-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12141686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 8;277(45):43495-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12171921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Dec;66(4):579-91, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 27;278(26):23460-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12704202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):737-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Jan;24(1):338-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(14):e115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Oct;3(5):1261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353587</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cremonesi, Alessio" sort="Cremonesi, Alessio" uniqKey="Cremonesi A" first="Alessio" last="Cremonesi">Alessio Cremonesi</name>
<name sortKey="Hall, Michael N" sort="Hall, Michael N" uniqKey="Hall M" first="Michael N" last="Hall">Michael N. Hall</name>
<name sortKey="Jeno, Paul" sort="Jeno, Paul" uniqKey="Jeno P" first="Paul" last="Jenö">Paul Jenö</name>
<name sortKey="Moes, Suzette" sort="Moes, Suzette" uniqKey="Moes S" first="Suzette" last="Moes">Suzette Moes</name>
<name sortKey="Schutz, Frederic" sort="Schutz, Frederic" uniqKey="Schutz F" first="Frédéric" last="Schütz">Frédéric Schütz</name>
</noCountry>
<country name="Suisse">
<noRegion>
<name sortKey="Soulard, Alexandre" sort="Soulard, Alexandre" uniqKey="Soulard A" first="Alexandre" last="Soulard">Alexandre Soulard</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001377 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001377 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20702584
   |texte=   The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20702584" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020